

Animal Life Span Data

Life spans vary enormously from species to species. In the wild, animals are subject to attack by predators and competitors, difficulty in finding and competing for food, and adverse environmental conditions such as harsh winters. Older or otherwise weaker animals often do not survive. Under laboratory or zoo conditions, animals have food provided and are protected from other animals of the same or different species as well as from environmental conditions. Zoo animals receive some medical care and typically live much longer than wild animals. The *average* life span of wild animals is therefore shorter than for zoo animals while the *maximum* recorded life spans while usually higher for zoo animals are sometimes higher for wild animals.

The following table lists *maximum recorded* life spans (in years) for some animals.

Species Laxmann's shrew Sorex caecutiens	Age
Human Homo sapiens	2
·	122
Highland desert mouse Eligmodontia typus	0.8
Marsupial mouse Antechinus (various, male)	0.9
Asian elephant Elephas maximus	80
Little Brown Bat Myotis lucifugus	30
Eastern gray squirrel Sciurus carolinensis	23.5
House canary Serinus canarius	22
American robin Turdus migratorius	12.8
American Crow Corvus brachyrhynchos	14.6
African gray parrot Psittacus erithacus	73
Red-breasted parrot Poicephalus rufiventris	33.4
White-winged crossbill Loxia leucoptera	4
American white pelican Pelecanus erythrorhynchos	54
Brown pelican Pelecanus occidentalis	31
Beluga sturgeon Huso huso	118
Lake sturgeon Acipenser fulvescens	152
Rockfish Sebastes aleutianus	140
Pygmy Gobi Eviota sigillata	0.2
Pacific ocean perch Sebastes alutus	26
Pink salmon Oncorhynchus gorbuscha	3
Sockeye salmon Oncorhynchus nerka	8
Halibut Hippoglossus vulgaris	90
Aldabra tortoise Geochelone gigantea	152
Wood turtle Clemmys insculpta	60
Eastern box turtle Terrapene carolina carolina	75
Coahuilan box turtle Terrapene coahuila	9.4

One point of this table was to illustrate that very similar species sometimes have dramatically different life spans. Notice the 760:1 range in fish life spans.

Some fish and reptiles have extremely long maximum life spans. Humans have the greatest authenticated maximum life span (122 years) of any mammal. However, some researchers think that a bowhead whale killed in Alaska by Eskimos was 211 years old.

This table seriously underestimates the maximum age potential for longer-lived animals relative to humans. This is because humans have greater medical support and because life spans of humans are much better monitored. We have measured the life spans of at least several hundred million people. If we measured several hundred million rockfish what would be their maximum age? Most of the people lived under conditions where they could survive even though seriously weakened by age. What would be the maximum age of rockfish if similarly protected and medically supported?

The several species of marsupial mouse are interesting examples of programmed death in mammals. The males are semelparous and die following mating. Some theorists, following traditional evolutionary mechanics theory, contend that these animals are designed to expend all of their life energy in mating and that this results in an individual competitive reproductive benefit that outweighs the evolutionary disadvantage of programmed death. Others believe programmed death has evolutionary benefits of its own.

Life span observations are critical to development of **theories of biological aging** including human aging.

www.programmed-aging.org
Sponsored by Azinet LLC © 2009